Selina Solutions Class 10 Maths Chapter 21 Trigonometrical Identities
Selina Solutions Concise Maths Class 10 Chapter 21 Trigonometrical Identities Exercise 21(B)
Question 1. Prove that:
Solution:
(i)
– Hence Proved
(ii) Taking LHS,
– Hence Proved
(iii)
– Hence Proved
(iv)
– Hence Proved
(v) Taking LHS,
2 sin2 A + cos2 A
= 2 sin2 A + (1 – sin2 A)2
= 2 sin2 A+ 1 + sin4 A – 2 sin2 A
= 1 + sin4 A = RHS
– Hence Proved
(vi)
– Hence Proved
(vii)
– Hence Proved
(viii)
– Hence Proved
(ix)
– Hence Proved
Question 2. If x cos A + y sin A = m and x sin A – y cos A = n, then prove that:
x2 + y2 = m2 + n2
Solution:
Taking RHS,
m2 + n2
= (x cos A + y sin A)2 + (x sin A – y cos A)2
= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A – 2xy sin A cos A
= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)
= x2 + y2 [Since, cos2 A + sin2 A = 1]
= RHS
Question 3. If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 – n2 = a2 – b2
Solution:
Taking LHS,
m2 – n2
= (a sec A + b tan A)2 – (a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A – a2 tan2 A – b2 sec2 A – 2ab tan A sec A
= a2 (sec2 A – tan2 A) + b2 (tan2 A – sec2 A)
= a2 (1) + b2 (-1) [Since, sec2 A – tan2 A = 1]
= a2 – b2
= RHS
0 Comments
Please Comment