Selina Solutions Class 10 Maths Chapter 21 Trigonometrical Identities
Selina Solutions Concise Maths Class 10 Chapter 21 Trigonometrical Identities
Exercise 21(A) Page No: 237
Prove the following identities:
Question 1. sec A – 1/ sec A + 1 = 1 – cos A/ 1 + cos A
Solution:
– Hence Proved
Question 2. 1 + sin A/ 1 – sin A = cosec A + 1/ cosec A – 1
Solution:
– Hence Proved
Question 3. 1/ tan A + cot A = cos A sin A
Solution:
Taking L.H.S,
– Hence Proved
Question 4. tan A – cot A = 1 – 2 cos2 A/ sin A cos A
Solution:
Taking LHS,
– Hence Proved
Question 5. sin4 A – cos4 A = 2 sin2 A – 1
Solution:
Taking L.H.S,
sin4 A – cos4 A
= (sin2 A)2 – (cos2 A)2
= (sin2 A + cos2 A) (sin2 A – cos2 A)
= sin2A – cos2A
= sin2A – (1 – sin2A) [Since, cos2 A = 1 – sin2 A]
= 2sin2 A – 1
– Hence Proved
Question 6. (1 – tan A)2 + (1 + tan A)2 = 2 sec2 A
Solution:
Taking L.H.S,
(1 – tan A)2 + (1 + tan A)2
= (1 + tan2 A + 2 tan A) + (1 + tan2 A – 2 tan A)
= 2 (1 + tan2 A)
= 2 sec2 A [Since, 1 + tan2 A = sec2 A]
– Hence Proved
Question 7. cosec4 A – cosec2 A = cot4 A + cot2 A
Solution:
cosec4 A – cosec2 A
= cosec2 A(cosec2 A – 1)
= (1 + cot2 A) (1 + cot2 A – 1)
= (1 + cot2 A) cot2 A
= cot4 A + cot2 A = R.H.S
– Hence Proved
Question 8. sec A (1 – sin A) (sec A + tan A) = 1
Solution:
Taking L.H.S,
sec A (1 – sin A) (sec A + tan A)
– Hence Proved
Question 9. cosec A (1 + cos A) (cosec A – cot A) = 1
Solution:
Taking L.H.S,
– Hence Proved
Question 10. sec2 A + cosec2 A = sec2 A . cosec2 A
Solution:
Taking L.H.S,
– Hence Proved
Question 11. (1 + tan2 A) cot A/ cosec2 A = tan A
Solution:
Taking L.H.S,
= RHS
– Hence Proved
Question 12. tan2 A – sin2 A = tan2 A. sin2 A
Solution:
Taking L.H.S,
tan2 A – sin2 A
– Hence Proved
Question 13. cot2 A – cos2 A = cos2A. cot2A
Solution:
Taking L.H.S,
cot2 A – cos2 A
– Hence Proved
Question 14. (cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Solution:
Taking L.H.S,
(cosec A + sin A) (cosec A – sin A)
= cosec2 A – sin2 A
= (1 + cot2 A) – (1 – cos2 A)
= cot2 A + cos2 A = R.H.S
– Hence Proved
Question 15. (sec A – cos A)(sec A + cos A) = sin2 A + tan2 A
Solution:
Taking L.H.S,
(sec A – cos A)(sec A + cos A)
= (sec2 A – cos2 A)
= (1 + tan2 A) – (1 – sin2 A)
= sin2 A + tan2 A = RHS
– Hence Proved
Question 16. (cos A + sin A)2 + (cosA – sin A)2 = 2
Solution:
Taking L.H.S,
(cos A + sin A)2 + (cosA – sin A)2
= cos2 A + sin2 A + 2cos A sin A + cos2 A – 2cosA.sinA
= 2 (cos2 A + sin2 A) = 2 = R.H.S
– Hence Proved
Question 17. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1
Solution:
Taking LHS,
(cosec A – sin A)(sec A – cos A)(tan A + cot A)
= RHS
– Hence Proved
Question 18. 1/ sec A + tan A = sec A – tan A
Solution:
Taking LHS,
= RHS
– Hence Proved
Question 19. cosec A + cot A = 1/ cosec A – cot A
Solution:
Taking LHS,
cosec A + cot A
= RHS
– Hence Proved
20. sec A – tan A/ sec A + tan A = 1 – 2 secA tanA + 2 tan2 A
Solution:
Taking LHS,
= 1 + tan2 A + tan2 A – 2 sec A tan A
= 1 – 2 sec A tan A + 2 tan2 A = RHS
– Hence Proved
Question 21. (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Solution:
Taking LHS,
(sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A
= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2
= 1 + cosec2 A + sec2 A + 4
= 5 + (1 + cot2 A) + (1 + tan2 A)
= 7 + tan2 A + cot2 A = RHS
– Hence Proved
Question 22. sec2 A. cosec2 A = tan2 A + cot2 A + 2
Solution:
Taking,
RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A
= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2
= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A
= sec2 A. cosec2 A = LHS
– Hence Proved
Question 23. 1/ 1 + cos A + 1/ 1 – cos A = 2 cosec2 A
Solution:
Taking LHS,
= RHS
– Hence Proved
Question 24. 1/ 1 – sin A + 1/ 1 + sin A = 2 sec2 A
Solution:
Taking LHS,
= RHS
– Hence Proved
0 Comments
Please Comment