Selina Solutions Class 10 Maths Chapter 21 Trigonometrical Identities
Selina Solutions Concise Maths Class 10 Chapter 21 Trigonometrical Identities Exercise 21(C)
Question 1. Show that:
(i) tan 10o tan 15o tan 75o tan 80o = 1
Solution:
Taking, tan 10o tan 15o tan 75o tan 80o
= tan (90o – 80o) tan (90o – 75o) tan 75o tan 80o
= cot 80o cot 75o tan 75o tan 80o
= 1 [Since, tan θ x cot θ = 1]
(ii) sin 42o sec 48o + cos 42o cosec 48o = 2
Solution:
Taking, sin 42o sec 48o + cos 42o cosec 48o
= sin 42o sec (90o – 42o) + cos 42o cosec (90o – 42o)
= sin 42o cosec 42o + cos 42o sec 42o
= 1 + 1 [Since, sin θ x cosec θ = 1 and cos θ x sec θ = 1]
= 2
(iii) sin 26o/ sec 64o + cos 26o/ cosec 64o = 1
Solution:
Taking,
Question 2. Express each of the following in terms of angles between 0°and 45°:
(i) sin 59°+ tan 63°
(ii) cosec 68°+ cot 72°
(iii) cos 74°+ sec 67°
Solution:
(i) sin 59°+ tan 63°
= sin (90 – 31)°+ tan (90 – 27)°
= cos 31°+ cot 27°
(ii) cosec 68°+ cot 72°
= cosec (90 – 22)°+ cot (90 – 18)°
= sec 22°+ tan 18°
(iii) cos 74°+ sec 67°
= cos (90 – 16)°+ sec (90 – 23)°
= sin 16°+ cosec 23°
Question 3. Show that:
Solution:
= sin A cos A – sin3 A cos A – cos3 A sin A
= sin A cos A – sin A cos A (sin2 A + cos2 A)
= sin A cos A – sin A cos A (1) [Since, sin2 A + cos2 A = 1]
= 0
Question 4. For triangle ABC, show that:
(i) sin (A + B)/ 2 = cos C/2
(ii) tan (B + C)/ 2 = cot A/2
Solution:
We know that, in triangle ABC
∠A + ∠B + ∠C = 180o [Angle sum property of a triangle]
(i) Now,
(∠A + ∠B)/ 2 = 90o – ∠C/ 2
So,
sin ((A + B)/ 2) = sin (90o – C/ 2)
= cos C/ 2
(ii) And,
(∠C + ∠B)/ 2 = 90o – ∠A/ 2
So,
tan ((B + C)/ 2) = tan (90o – A/ 2)
= cot A/ 2
Question 5. Evaluate:
Solution:
(i)
(ii) 3 cos 80o cosec 10o + 2 cos 59o cosec 31o
= 3 cos (90 – 10)o cosec 10o + 2 cos (90 – 31)o cosec 31o
= 3 sin 10o cosec 10o + 2 sin 31o cosec 31o
= 3 + 2 = 5
(iii) sin 80o/ cos 10o + sin 59o sec 31o
= sin (90 – 10)o/ cos 10o + sin (90 – 31)o sec 31o
= cos 10o/ cos 10o + cos 31o sec 31o
= 1 + 1 = 2
(iv) tan (55o – A) – cot (35o + A)
= tan [90o – (35o + A)] – cot (35o + A)
= cot (35o + A)] – cot (35o + A)
= 0
(v) cosec (65o + A) – sec (25o – A)
= cosec [90o – (25o – A)] – sec (25o – A)
= sec (25o – A) – sec (25o – A)
= 0
(vi)
(vii)
= 1 – 2 = -1
(viii)
(ix) 14 sin 30o + 6 cos 60o – 5 tan 45o
= 14 (1/2) + 6 (1/2) – 5(1)
= 7 + 3 – 5
= 5
Question 6. A triangle ABC is right angled at B; find the value of (sec A. cosec C – tan A. cot C)/ sin B
Solution:
As, ABC is a right angled triangle right angled at B
So, A + C = 90o
(sec A. cosec C – tan A. cot C)/ sin B
= (sec (90o – C). cosec C – tan (90o – C). cot C)/ sin 90o
= (cosec C. cosec C – cot C. cot C)/ 1 = cosec2 C – cot2 C
= 1 [Since, cosec2 C – cot2 C = 1]
0 Comments
Please Comment