Selina Solutions Class 10 Maths Chapter 21 Trigonometrical Identities
Selina Solutions Concise Maths Class 10 Chapter 21 Trigonometrical Identities Exercise 21(E)
Question 1. Prove the following identities:
Solution:
(i) Taking LHS,
1/ (cos A + sin A) + 1/ (cos A – sin A)
= RHS
– Hence Proved
(ii) Taking LHS, cosec A – cot A
= RHS
– Hence Proved
(iii) Taking LHS, 1 – sin2 A/ (1 + cos A)
= RHS
– Hence Proved
(iv) Taking LHS,
(1 – cos A)/ sin A + sin A/ (1 – cos A)
= RHS
– Hence Proved
(v) Taking LHS, cot A/ (1 – tan A) + tan A/ (1 – cot A)
= RHS
– Hence Proved
(vi) Taking LHS, cos A/ (1 + sin A) + tan A
= RHS
– Hence Proved
(vii) Consider LHS,
= (sin A/(1 – cos A)) – cot A
We know that, cot A = cos A/sin A
So,
= (sin2 A – cos A + cos2 A)/(1 – cos A) sin A
= (1 – cos A)/(1 – cos A) sin A
= 1/sin A
= cosec A
(viii) Taking LHS, (sin A – cos A + 1)/ (sin A + cos A – 1)
= RHS
– Hence Proved
(ix) Taking LHS,
= RHS
– Hence Proved
(x) Taking LHS,
= RHS
– Hence Proved
(xi) Taking LHS,
= RHS
– Hence Proved
(xii) Taking LHS,
= RHS
– Hence Proved
(xiii) Taking LHS,
= RHS
– Hence Proved
(xiv) Taking LHS,
= RHS
– Hence Proved
(xv) Taking LHS,
sec4 A (1 – sin4 A) – 2 tan2 A
= sec4 A(1 – sin2 A) (1 + sin2 A) – 2 tan2 A
= sec4 A(cos2 A) (1 + sin2 A) – 2 tan2 A
= sec2 A + sin2 A/ cos2 A – 2 tan2 A
= sec2 A – tan2 A
= 1 = RHS
– Hence Proved
(xvi) cosec4 A(1 – cos4 A) – 2 cot2 A
= cosec4 A (1 – cos2 A) (1 + cos2 A) – 2 cot2 A
= cosec4 A (sin2 A) (1 + cos2 A) – 2 cot2 A
= cosec2 A (1 + cos2 A) – 2 cot2 A
= cosec2 A + cos2 A/sin2 A – 2 cot2 A
= cosec2 A + cot2 A – 2 cot2 A
= cosec2 A – cot2 A
= 1 = RHS
– Hence Proved
(xvii) (1 + tan A + sec A) (1 + cot A – cosec A)
= 1 + cot A – cosec A + tan A + 1 – sec A + sec A + cosec A – cosec A sec A
= 2 + cos A/sin A+ sin A/cos A – 1/(sin A cos A)
= 2 + (cos2 A + sin2 A)/ sin A cos A – 1/(sin A cos A)
= 2 + 1/(sin A cos A) – 1/(sin A cos A)
= 2 = RHS
– Hence Proved
Question 2. If sin A + cos A = p
and sec A + cosec A = q, then prove that: q(p2 – 1) = 2p
Solution:
Taking the LHS, we have
q(p2 – 1) = (sec A + cosec A) [(sin A + cos A)2 – 1]
= (sec A + cosec A) [sin2 A + cos2 A + 2 sin A cos A – 1]
= (sec A + cosec A) [1 + 2 sin A cos A – 1]
= (sec A + cosec A) [2 sin A cos A]
= 2sin A + 2 cos A
= 2p
Question 3. If x = a cos θ and y = b cot θ, show that:
a2/ x2 – b2/ y2 = 1
Solution:
Taking LHS,
a2/ x2 – b2/ y2
Question 4. If sec A + tan A = p, show that:
sin A = (p2 – 1)/ (p2 + 1)
Solution:
Taking RHS, (p2 – 1)/ (p2 + 1)
Question 5. If tan A = n tan B and sin A = m sin B, prove that:
cos2 A = m2 – 1/ n2 – 1
Solution:
Given,
tan A = n tan B
n = tan A/ tan B
And, sin A = m sin B
m = sin A/ sin B
Now, taking RHS and substitute for m and n
m2 – 1/ n2 – 1
Question 6. (i) If 2 sin A – 1 = 0, show that:
sin 3A = 3 sin A – 4 sin3 A
(ii) If 4 cos2 A – 3 = 0, show that:
cos 3A = 4 cos2 A – 3 cos A
Solution:
(i) Given, 2 sin A – 1 = 0
So, sin A = ½
We know, sin 30o = 1/2
Hence, A = 30o
Now, taking LHS
sin 3A = sin 3(30o) = sin 30o = 1
RHS = 3 sin 30o – 4 sin3 30o = 3 (1/2) – 4 (1/2)3 = 3 – 4(1/8) = 3/2 – ½ = 1
Therefore, LHS = RHS
(ii) Given, 4 cos2 A – 3 = 0
4 cos2 A = 3
cos2 A = 3/4
cos A = √3/2
We know, cos 30o = √3/2
Hence, A = 30o
Now, taking
LHS = cos 3A = cos 3(30o) = cos 90o = 0
RHS = 4 cos3 A – 3 cos A = 4 cos3 30o – 3 cos 30o = 4 (√3/2)3 – 3 (√3/2)
= 4 (3√3/8) – 3√3/2
= 3√3/2 – 3√3/2
= 0
Therefore, LHS = RHS
Question 7. Evaluate:
Solution:
(i)
= 2 (1)2 + 12 – 3
= 2 + 1 – 3 = 0
(ii)
= 1 + 1 = 2
(iii)
(iv) cos 40o cosec 50o + sin 50o sec 40o
= cos (90 – 50)o cosec 50o + sin (90 – 50)o sec 40o
= sin 50o cosec 50o + cos 40o sec 40o
= 1 + 1 = 2
(v) sin 27o sin 63o – cos 63o cos 27o
= sin (90 – 63)o sin 63o – cos 63o cos (90 – 63)o
= cos 63o sin 63o – cos 63o sin 63o
= 0
(vi)
(vii) 3 cos 80o cosec 10o + 2 cos 59o cosec 31o
= 3 cos (90 – 10)o cosec 10o + 2 cos (90 – 31)o cosec 31o
= 3 sin 10o cosec 10o + 2 sin 31o cosec 31o
= 3 + 2 = 5
(viii)
Question 8. Prove that:
(i) tan (55o + x) = cot (35o – x)
(ii) sec (70o – θ) = cosec (20o + θ)
(iii) sin (28o + A) = cos (62o – A)
(iv) 1/ (1 + cos (90o – A)) + 1/(1 – cos (90o – A)) = 2 cosec2 (90o – A)
(v) 1/ (1 + sin (90o – A)) + 1/(1 – sin (90o – A)) = 2 sec2 (90o – A)
Solution:
(i) tan (55o + x) = tan [90o – (35o – x)] = cot (35o – x)
(ii) sec (70o – θ) = sec [90o – (20o + θ)] = cosec (20o + θ)
(iii) sin (28o + A) = sin [90o – (62o – A)] = cos (62o – A)
(iv)
(v)
0 Comments
Please Comment