Follow on G+

Selina Solutions Concise Maths Class 10 Chapter 24 Measures of Central Tendency Exercise 24(E)

Selina Solutions Class 10 Maths Chapter 24 Measures of Central Tendency

Recalling the concepts learned from the previous chapter, the practice consists of a mixture of problems based on extracting the mean, median, polymer, and pylon for appropriate questions. If students are looking for a resource to clarify their doubts, stop here at Selina Solutions of Class 10 Mathematics as these solutions have been created by experts from Mathematics PDF Solutions keeping in mind the latest ICSE patterns. These practice solutions are short Selina solutions for class 10 mathematics chapter 24 central trend practice measures  pdf available in the following link.

Exercise 24(A) Solutions

Exercise 24(B) Solutions

Exercise 24(C) Solutions

Exercise 24(D) Solutions

Exercise 24(E) Solutions


Selina Solutions Concise Maths Class 10 Chapter 24 Measures of Central Tendency Exercise 24(E)

1. The following distribution represents the height of 160 students of a school.

Height (in cm)

No. of Students

140 – 145

12

145 – 150

20

150 – 155

30

155 – 160

38

160 – 165

24

165 – 170

16

170 – 175

12

175 – 180

8

Draw an ogive for the given distribution taking 2 cm = 5 cm of height on one axis and 2 cm = 20 students on the other axis. Using the graph, determine:

i. The median height.

ii. The interquartile range.

iii. The number of students whose height is above 172 cm.

Solution:

Height (in cm)

No. of Students

Cumulative frequency

140 – 145

12

12

145 – 150

20

32

150 – 155

30

62

155 – 160

38

100

160 – 165

24

124

165 – 170

16

140

170 – 175

12

152

175 – 180

8

160

N = 160

Now, let’s draw an ogive taking height of student along x-axis and cumulative frequency along y-axis.

Selina Solutions Concise Class 10 Maths Chapter 24 ex. 24(E) - 1

(i) So,

Median = 160/2 = 80th term 

Through mark for 80, draw a parallel line to x-axis which meets the curve; then from the curve draw a vertical line which meets the x-axis at the mark of 157.5.

(ii) As, the number of terms = 160

Lower quartile (Q1) = (160/4) = 40th term = 152

Upper quartile (Q3) = (3 x 160/4) = 120th term = 164

Inner Quartile range = Q3 – Q1

= 164 – 152

= 12

(iii) Through mark for 172 on x-axis, draw a vertical line which meets the curve; then from the curve draw a horizontal line which meets the y-axis at the mark of 145.

Now,

The number of students whose height is above 172 cm

= 160 – 144 = 16

2. Draw ogive for the data given below and from the graph determine: (i) the median marks.

(ii) the number of students who obtained more than 75% marks.

Marks

10 – 19

20 -29

30 – 39

40 – 49

50 – 59

60 – 69

70 – 79

80 – 89

90 – 99

No. of students

14

16

22

26

18

11

6

4

3

Solution:

Marks

No. of students

Cumulative frequency

9.5 – 19.5

14

14

19.5 – 29.5

16

30

29.5 – 39.5

22

52

39.5 – 49.5

26

78

49.5 – 59.5

18

96

59.5 – 69.5

11

107

69.5 – 79.5

6

113

79.5 – 89.5

4

117

89.5 – 99.5

3

120

Scale:

1cm = 10 marks on X axis

1cm = 20 students on Y axis 

 
Selina Solutions Concise Class 10 Maths Chapter 24 ex. 24(E) - 2

(i) So, the median = 120/ 2 = 60th term

Through mark 60, draw a parallel line to x-axis which meets the curve at A. From A, draw a perpendicular to x-axis meeting it at B.

The value of point B is the median = 43

(ii) Total marks = 100

75% of total marks = 75/100 x 100 = 75 marks

Hence, the number of students getting more than 75% marks = 120 – 111 = 9 students.

 

3. The mean of 1, 7, 5, 3, 4 and 4 is m. The numbers 3, 2, 4, 2, 3, 3 and p have mean m – 1 and median q. Find p and q.

Solution:

Mean of 1, 7, 5, 3, 4 and 4 = (1 + 7 + 5 + 3 + 4 + 4)/ 6 = 24/6 = 4

So, m = 4

Now, given that

The mean of 3, 2, 4, 2, 3, 3 and p = m -1 = 4 – 1 = 3

Thus, 17 + p = 3 x n …. ,where n = 7

17 + p = 21

p = 4

Arranging the terms in ascending order, we have:

2, 2, 3, 3, 3, 3, 4, 4

Mean = 4th term = 3

Hence, q = 3

4. In a malaria epidemic, the number of cases diagnosed were as follows:

Date (July)

1

2

3

4

5

6

7

8

9

10

11

12

Number

5

12

20

27

46

30

31

18

11

5

0

1

On what days do the mode and upper and lower quartiles occur?

Solution:

 

Date

Number

C.f.

1

5

5

2

12

17

3

20

37

4

27

64

5

46

110

6

30

140

7

31

171

8

18

189

9

11

200

10

5

205

11

0

205

12

1

206

 

(i) Mode = 5th July as it has maximum frequencies.

(ii) Total number of terms = 206

Upper quartile = 206 x (3/4) = 154.5th = 7th July

Lower quartile = 206 x (1/4) = 51.5th = 4th July

5. The income of the parents of 100 students in a class in a certain university are tabulated below.

Income (in thousand Rs)

0 – 8

8 – 16

16 – 24

24 – 32

32 – 40

No. of students

8

35

35

14

8

 (i) Draw a cumulative frequency curve to estimate the median income.

(ii) If 15% of the students are given freeships on the basis of the basis of the income of their parents, find the annual income of parents, below which the freeships will be awarded.

(iii) Calculate the Arithmetic mean.

Solution:

Selina Solutions Concise Class 10 Maths Chapter 24 ex. 24(E) - 3

(i) Cumulative Frequency Curve

Income

(in thousand Rs.)

No. of students

f

Cumulative

Frequency

Class mark

x

fx

0 – 8

8

8

4

32

8 – 16

35

43

12

420

16 – 24

35

78

20

700

24 – 32

14

92

28

392

32 – 40

8

100

36

288

∑f = 100

∑ fx = 1832

 

We plot the points (8, 8), (16, 43), (24, 78), (32, 92) and (40, 100) to get the curve as follows:

Here, N = 100

N/2 = 50

At y = 50, affix A.

Through A, draw a horizontal line meeting the curve at B.

Through B, a vertical line is drawn which meets OX at M.

OM = 17.6 units

Hence, median income = 17.6 thousands

(ii) 15% of 100 students = (15 x 100)/ 100 = 15

From c.f. 15, draw a horizontal line which intersects the curve at P.

From P, draw a perpendicular to x – axis meeting it at Q which is equal to 9.6

Thus, freeship will be awarded to students provided annual income of their parents is upto 9.6 thousands.

(ii) Mean = ∑ fx/ ∑ f = 1832/100 = 18.32

6. The marks of 20 students in a test were as follows:

2, 6, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19 and 20.

Calculate:

(i) the mean (ii) the median (iii) the mode

Solution:

Arranging the terms in ascending order:

2, 6, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19, 20

Number of terms = 20

∑ x = 2 + 6 + 8 + 9 + 11 + 11 + 12 + 13 + 13 + 14 + 14 + 15 + 15 + 15 + 15 + 16 + 16 + 18 + 19 + 20 = 257

(i) Mean = ∑x/ ∑n = 257/ 20 = 12.85

(ii) Median = (10th term + 11th term)/ 2 = (13 + 14)/ 2 = 27/ 2 = 13.5

(iii) Mode = 15 since it has maximum frequencies i.e. 3

7. The marks obtained by 120 students in a mathematics test is given below:

Marks

No. of students

0-10

5

10-20

9

20-30

16

30-40

22

40-50

26

50-60

18

60-70

11

70-80

6

80-90

4

90-100

3

Draw an ogive for the given distribution on a graph sheet. Use a suitable scale for your ogive. Use your ogive to estimate:

(i) the median

(ii) the number of students who obtained more than 75% in test.

(iii) the number of students who did not pass in the test if the pass percentage was 40.

(iv) the lower quartile

Solution:

Marks

No. of students

c.f.

0-10

5

5

10-20

9

14

20-30

16

30

30-40

22

52

40-50

26

78

50-60

18

96

60-70

11

107

70-80

6

113

80-90

4

117

90-100

3

120

Selina Solutions Concise Class 10 Maths Chapter 24 ex. 24(E) - 4

(i)  Median = (120 + 1)/ 2 = 60.5th term

Through mark 60.5, draw a parallel line to x-axis which meets the curve at A. From A draw a perpendicular to x-axis meeting it at B.

Then, the value of point B is the median = 43

(ii) Number of students who obtained up to 75% marks in the test = 110

Number of students who obtained more than 75% marks in the test = 120 – 110 = 10

(iii) Number of students who obtained less than 40% marks in the test = 52 (from the graph; x = 40, y = 52)

(iv) Lower quartile = Q1 = 120 x (1/4) = 30th term = 30

8. Using a graph paper, draw an ogive for the following distribution which shows a record of the width in kilograms of 200 students.

Weight

Frequency

40 – 45

5

45 – 50

17

50 – 55

22

55 – 60

45

60 – 65

51

65 – 70

31

70 – 75

20

75 – 80

9

Use your ogive to estimate the following:

(i) The percentage of students weighing 55 kg or more

(ii) The weight above which the heaviest 30% of the student fall

(iii) The number of students who are (a) underweight (b) overweight, if 55.70 kg is considered as standard weight.

Solution:

Weight

Frequency

c. f.

40-45

5

5

45-50

17

22

50-55

22

44

55-60

45

89

60-65

51

140

65-70

31

171

70-75

20

191

75-80

9

200

Selina Solutions Concise Class 10 Maths Chapter 24 ex. 24(E) - 5

(i) The number of students weighing more than 55 kg = 200 – 44 = 156

Thus, the percentage of students weighing 55 kg or more = (156/200) x 100 = 78 %

(ii) 30% of students = (30 x 200)/ 100 = 60 

Heaviest 60students in weight = 9 + 21 + 30 = 60

Weight = 65 kg (From table)

(iii) (a) underweight students when 55.70 kg is standard = 46 (approx.) from graph

(b) overweight students when 55.70 kg is standard = 200 – 55.70 = 154 (approx.) from graph

9. The distribution, given below, shows the marks obtained by 25 students in an aptitude test. Find the mean, median and mode of the distribution.

Marks obtained

5

6

7

8

9

10

No. of students

3

9

6

4

2

1

Solution:

Marks obtained(x)

No. of students (f)

c.f.

fx

5

3

3

15

6

9

12

54

7

6

18

42

8

4

22

32

9

2

24

18

10

1

25

10

Total

25

 

171

Number of terms = 25

(i) Mean = 171/25 = 6.84

(ii) Median = (25 + 1)/ 2 th = 13th term = 7

(iii) Mode = 6 since it has the maximum frequency i.e. 6

10. The mean of the following distribution is 52 and the frequency of class interval 30 – 40 is ‘f’. Find f.

Class Interval

10 – 20

20 – 30

30 – 40

40 – 50

50 – 60

60 – 70

70 – 80

Frequency

5

3

f

7

2

6

13

Solution:

C.I.

Frequency(f)

Mid value (x)

fx

10-20

5

15

75

20-30

3

25

75

30-40

f

35

35f

40-50

7

45

315

50-60

2

55

110

60-70

6

65

390

70-80

13

75

975

Total

36 + f

1940 + 35f

Mean = ∑ fx/ ∑ f = (1940 + 35f)/ (36 + f) …… (i)

But, given mean = 52 …. (ii)

From (i) and (ii), we have

(1940 + 35f)/ (36 + f) = 52

1940 + 35f = 1872 + 52f

17f = 68

Thus, f = 4

11. The monthly income of a group of 320 employees in a company is given below:

Monthly Income (thousands)

No. of employees

6 – 7

20

7 – 8

45

8 – 9

65

9 – 10

95

10 – 11

60

11 – 12

30

12 – 13

5

Draw an ogive of the given distribution on a graph paper taking 2 cm = Rs 1000 on one axis and 2 cm = 50 employees on the other axis. From the graph determine:

(i) the median wage.

(ii) number of employees whose income is below Rs 8500.

(iii) if salary of a senior employee is above Rs 11,500, find the number of senior employees in the company.

(iv) the upper quartile.

Solution:

Monthly Income (thousands)

No. of employees

(f)

Cumulative frequency

6-7

20

20

7-8

45

65

8-9

65

130

9-10

95

225

10-11

60

285

11-12

30

315

12-13

5

320

Total

320

Number of employees = 320

Selina Solutions Concise Class 10 Maths Chapter 24 ex. 24(E) - 6

(i) Median = 320/2 = 160th term

Through mark 160, draw a parallel line to x-axis which meets the curve at A, From A draw a perpendicular to x-axis meeting it at B.

The value of point B is the median = Rs 9.3 thousands

(ii) The number of employees with income below Rs 8,500 = 95 (approx from the graph)

(iii) Number of employees with income below Rs 11,500 = 305 (approx from the graph)

Thus, the number of employees (senior employees) = 320 – 305 = 15

(iv) Upper quartile = Q3 = 320 x (3/4) = 240th term = 10.3 thousands = Rs 10,300


Exercise 24(A) Solutions

Exercise 24(B) Solutions

Exercise 24(C) Solutions

Exercise 24(D) Solutions

Exercise 24(E) Solutions

More Selina Concise Solutions Class 10

Post a Comment

0 Comments