Follow on G+

Selina Solutions Concise Maths Class 10 Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Exercise 20(F)

Selina Solutions Class 10 Maths Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume)

This chapter is one of the important chapters to focus on ICSE Class 10. The major topics covered in this chapter are surface area and volume of cylinders, cones and spheres, conversion of solids, condensation of solids and other miscellaneous problems. Selina Solutions for Class 10 Mathematics, prepared by our experienced faculty at maths pdf solution , is designed to facilitate students to clear their doubts. It also provides guidance to students to solve problems with confidence. Thus, improving their problem-solving skills, which are important from an exam point of view. Selina Solutions for Class 10 Mathematics Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) PDF is available in the following link.

Exercise 20(A) Solutions

Exercise 20(B) Solutions

Exercise 20(C) Solutions

Exercise 20(D) Solutions

Exercise 20(E) Solutions

Exercise 20(G) Solutions

Selina Solutions Concise Maths Class 10 Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Exercise 20(F)

1. From a solid right circular cylinder with height 10 cm and radius of the base 6 cm, a right circular cone of the same height and same base are removed. Find the volume of the remaining solid.

Solution:

Given,

Height of the cylinder (h) = 10 cm

And radius of the base (r) = 6 cm

Volume of the cylinder = Ï€rh

Height of the cone = 10 cm

Radius of the base of cone = 6 cm

Volume of the cone = 1/3 Ï€rh

Volume of the remaining part = Ï€rh – 1/3 Ï€rh

= 2/3 πrh

= 2/3 x 22/7 x 6 x 6 x 10

= 5280/7 cm3

= 754 (2/7) cm3

2. From a solid cylinder whose height is 16 cm and radius is 12 cm, a conical cavity of height 8 cm and of base radius 6 cm is hollowed out. Find the volume and total surface area of the remaining solid.

Solution:

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 1

Given,

Radius of solid cylinder (R) = 12 cm

And, Height (H) = 16 cm

Volume = πRh = 22/7 x 12 x 12 x 16

= 50688/7 cm3

Also given,

Radius of cone (r) = 6 cm, and height (h) = 8 cm.

Volume = 1/3 πrh

= 1/3 x 22/7 x 6 x 6 x 8

= 2112/7 cm3

(i) Volume of remaining solid = 50688/7 – 2112/7

= 48567/7

= 6939.43 cm3

(ii) Slant height of cone l = (h2 + r2)1/2

= (62 + 82)1/2 = (36 + 64)1/2 = (100)1/2 = 10 cm

Thus,

Total surface area of remaining solid = curved surface area of cylinder + curved surface area of cone + base area of cylinder + area of circular ring on upper side of cylinder

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 2

= 15312/7

= 2187.43 cm2

3. A circus tent is cylindrical to a height of 4 m and conical above it. If its diameter is 105 m and its slant height is 80 m, calculate the total area of canvas required. Also, find the total cost of canvas used at Rs 15 per meter if the width is 1.5 m

Solution:

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 3

Given,

Radius of the cylindrical part of the tent (r) =105/2 m

Slant height (l) = 80 m

So, the total curved surface area of the tent = 2Ï€r h + Ï€rl

= (2 x 22/7 x 105/2 x 4) + (22/7 x 105/2 x 80)

= 1320 + 13200

= 14520 m2

Width of canvas used = 1.5 m

Length of canvas = 14520/1.5 = 9680 m 

Hence,

Total cost of canvas at the rate of Rs 15 per meter = 9680 x 15 = Rs 145200

4. A circus tent is cylindrical to a height of 8 m surmounted by a conical part. If total height of the tent is 13 m and the diameter of its base is 24 m; calculate:

(i) total surface area of the tent

(ii) area of canvas, required to make this tent allowing 10% of the canvas used for folds and stitching.

Solution:

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 4

Given,

Height of the cylindrical part = H = 8 m

Height of the conical part = h = (13 – 8) m = 5 m

Diameter = 24 m

So, its radius = 24/2 = 12 m

Then, slant height (l) = (r+ h2)1/2

= (122 + 52)1/2 = (144 + 25)1/2 = (169)1/2 = 13 m

(i) Total surface area of the tent = 2πrh + πrl = πr(2h + l)

= 22/7 x 12 x (2 x 8 + 13)

= 264/7 (16 + 3)

= 264/7 x 29

= 7656/7 m2

= 1093.71 m2

(ii) Area of canvas used in stitching = total area of canvas

Total area of canvas = 7656/7 + total area of canvas/10

Total area of canvas – Total area of canvas/10 = 7656/10

Total area of canvas (1 – 1/10) = 7656/7

Total area of canvas x 9/10 = 7656/7

Total area of canvas = 7656/7 x 10/9 = 76560/63

Therefore, the total area of canvas = 1215.23 m2

5. A cylindrical boiler, 2 m high, is 3.5 m in diameter. It has a hemispherical lid. Find the volume of its interior, including the part covered by the lid.

Solution:

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 5

Given,

Diameter of cylindrical boiler = 3.5 m

So, the radius (r) = 3.5/2 = 35/20 = 7/4 m

Height (h) = 2m

Radius of hemisphere (R) = 7/4 m

Total volume of the boiler = πr2h + 2/3 πr3

= πr2(h + 2/3r)

= 22/7 x 7/4 x 7/4 (2 + 2/3 x 7/4)

= 77/8 (2 + 7/6)

= 77/8 x 19/6 = 1463/48

= 30.48 m3

6. A vessel is a hollow cylinder fitted with a hemispherical bottom of the same base. The depth of the cylindrical part is 4(2/3) m and the diameter of hemisphere is 3.5 m. Calculate the capacity and the internal surface area of the vessel.

Solution:

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 6

Given,

Diameter of the base = 3.5 m

So, its radius = 3.5/2 m = 1.75 m = 7/4 m

Height of cylindrical part = 4 + 2/3 = 14/3

(i) Capacity (volume) of the vessel = Ï€r2h + 2/3 Ï€r2 = Ï€r(h + 2/3r)

= 22/7 x 7/4 x 7/4(14/3 + 2/3 x 7/4)

= 77/8(14/3 + 7/6)

= 77/8(28+7/6)

= 77/8 x 35/6

= 2695/48

= 56.15 m3

(ii) Internal curved surface area = 2Ï€rh + 2Ï€r2 = 2Ï€r(h + r)

= 2 x 22/7 x 7/4(14/3 + 7/4)

= 11(56 + 21)/12

= 11 x 77/12

= 847/12

= 70.58 m2

Selina Solutions Concise Class 10 Maths Chapter 20 ex. 20(F) - 77. A wooden toy is in the shape of a cone mounted on a cylinder as shown alongside.

If the height of the cone is 24 cm, the total height of the toy is 60 cm and the radius of the base of the cone = twice the radius of the base of the cylinder = 10 cm; find the total surface area of the toy. [Take Ï€ = 3.14]

Solution:

Given,

Height of the cone (h) = 24 cm

Height of the cylinder (H) = 36 cm

Radius of the cone (r) = twice the radius of the cylinder = 10 cm

Radius of the cylinder (R) = 5 cm

Then, we know the slant height of the cone = (r2 + h2)1/2 = (102 + 242)1/2 = (100 + 576)1/2

= (676)1/2 = 26 cm

Now, the surface area of the toy = curved area of the conical point + curved area of the cylinder

= Ï€rl + Ï€r2 + 2Ï€RH

= Ï€ (rl + r2 + 2RH)

= 3.14 (10 x 26 + 102 + 2x5x36)

= 3.14 (260 + 100 + 360)

= 3.14 (720)

= 2260.8 cm2


Exercise 20(A) Solutions

Exercise 20(B) Solutions

Exercise 20(C) Solutions

Exercise 20(D) Solutions

Exercise 20(E) Solutions

Exercise 20(G) Solutions


More Selina Concise Solutions Class 10

Post a Comment

0 Comments